
DAC09: After Media:
Embodiment and Context
Volume Editors: Lanfranco Aceti and Simon PennyD A C 0 9
after media :
e m b o d i m e n t
a n d c o n t e x t

VOL 17 NO 2 VOLUME EDITORS LANFRANCO ACETI AND SIMON PENNY

CONTRIBUTORS STEPHANIE BOLUK, MAURO CARASSAI, KENNY CHOW,

SHARON DANIEL, KRISTEN GALVIN, FOX HARRELL, SNEHA VEERAGOUDAR

HARRELL, GARNET HERTZ, JI-HOON FELIX KIM, PATRICK LEMIEUX,

ELISABETH LOSH, MARK MARINO, MICHAEL MATEAS, CHANDLER B.

MCWILLIAMS, CARRIE NOLAND, ANNE SULLIVAN, NOAH WARDRIP-FRUIN,

JICHEN ZHU

LEA is a publication of Leonardo/ISAST.

SPECIAL ISSUE

L E O N A R D O E L E C T R O N I C A L M A N A C V O L 1 7 N O 2 I S S N 1 0 7 1 - 4 3 9 1 I S B N 9 7 8 - 1 - 9 0 6 8 9 7 - 1 6 - 1

Copyright 2012 ISAST

Leonardo Electronic Almanac

Volume 17 Issue 2

January 2012

ISSN: 1071-4391

ISBN: 978-1906897-16-1

The ISBN is provided by Goldsmiths, University of London

lea publishing & subscription information

Editor in Chief

Lanfranco Aceti lanfranco.aceti@leoalmanac.org

Co-Editor

Özden Şahin ozden.sahin@leoalmanac.org

Managing Editor

John Francescutti john.francescutti@leoalmanac.org

Art Director

Deniz Cem Önduygu deniz.onduygu@leoalmanac.org

Graphic Designer

Zeynep Özel

Editorial Assistant

Ebru Sürek

Editors

Andrea Ackerman, Martin John Callanan, Connor Graham,

Jeremy Hight

Editorial Board

Peter J. Bentley, Ezequiel Di Paolo, Ernest Edmonds, Felice

Frankel, Gabriella Giannachi, Gary Hall, Craig Harris, Sibel Irzık,

Marina Jirotka, Beau Lotto, Roger Malina, Terrence Masson,

Jon McCormack, Mark Nash, Sally Jane Norman, Christiane

Paul, Simon Penny, Jane Prophet, Jeffrey Shaw, William

Uricchio

Contributing Editors

Nina Czegledy, Susan Collins, Leonardo Da Vinci, Anna

Dumitriu, Vince Dziekan, Darko Fritz, Marco Gillies, Davin

Heckman, Saoirse Higgins, Jeremy Hight, Denisa Kera, Frieder

Nake, Vinoba Vinayagamoorthy

Editorial Address

Leonardo Electronic Almanac

Sabanci University, Orhanli - Tuzla, 34956

Istanbul, Turkey

Email

info@leoalmanac.org

Web

www.leoalmanac.org

www.twitter.com/LEA_twitts

www.flickr.com/photos/lea_gallery

www.facebook.com/pages/Leonardo-Electronic-

Almanac/209156896252

»

»

»

»

Copyright © 2012

Leonardo, the International Society for the Arts,

Sciences and Technology

Leonardo Electronic Almanac is published by:

Leonardo/ISAST

211 Sutter Street, suite 501

San Francisco, CA 94108

USA

Leonardo Electronic Almanac (LEA) is a project of Leonardo/

The International Society for the Arts, Sciences and Technol-

ogy. For more information about Leonardo/ISAST’s publica-

tions and programs, see http://www.leonardo.info or contact

isast@leonardo.info.

Leonardo Electronic Almanac is produced by

Passero Productions.

Reposting of this journal is prohibited without permission of

Leonardo/ISAST, except for the posting of news and events

listings which have been independently received.

The individual articles included in the issue are © 2012 ISAST.

2

http://www.leoalmanac.org
http://www.twitter.com/LEA_twitts
http://www.flickr.com/photos/lea_gallery
http://www.facebook.com/pages/Leonardo-Electronic-Almanac/209156896252
http://www.facebook.com/pages/Leonardo-Electronic-Almanac/209156896252

L E O N A R D O E L E C T R O N I C A L M A N A C V O L 1 7 N O 2 I S S N 1 0 7 1 - 4 3 9 1 I S B N 9 7 8 - 1 - 9 0 6 8 9 7 - 1 6 - 1 I S S N 1 0 7 1 - 4 3 9 1 I S B N 9 7 8 - 1 - 9 0 6 8 9 7 - 1 6 - 1 V O L 1 7 N O 2 L E O N A R D O E L E C T R O N I C A L M A N A C

I would like to welcome you to the first special vol-
ume of the Leonardo Electronic Almanac. DAC09:
After Media: Embodiment and Context, is a volume
that generated from the conference by the same
name that Prof. Penny chaired at the end of 2009.

DAC09: After Media: Embodiment and Context is the
first of a series of special volumes of the Leonardo
Electronic Almanac that are realized in collaboration
with international academic, editors and authors.

Prof. Penny was inspired for this LEA special issue by
the continuous developments in the interdisciplinary
arena and in the fields of new media and digital art
culture. He wanted to collate research papers that
would provide the seeds for innovative thinking and
new research directions. The authors featured in this
volume, to whom we are most grateful for their hard
work, will provide the reader with the opportunity to
understand and imagine future developments in the
fields of digital art culture and interdisciplinarity.

As I look at the electronic file of what we now inter-
nally refer to simply as DAC09 the first issue of the
revamped LEA, Mish Mash, printed and delivered by
Amazon, sits on the desk next to my keyboard. The
possibilities and opportunities of e-publishing, which
also has physically printed outcomes, provide me with
further thoughts on the importance and necessity of
the work that is done by ‘small publishers’ in the aca-
demic field. The promising news of a new open access
journal to be launched by The Wellcome Trust or the

‘revolution’ of researchers against Elsevier through
the website http://thecostofknowledge.com/ with
9510 Researchers Taking a Stand (Thursday, April 12,
2012 at 10:57 Am) highlights the problems and issues
that the industry faces and the struggles of young
researchers and academics.

The contemporary academic publishing industry has
come a long way from the first attempts at e-publish-
ing and the revolution, if it can be defined as such, has
benefited some and harmed others.

As the struggle continues between open access and
copyrighted ownership,1 the ‘revelation’ of a lucrative
academic publishing industry, of economies of scales,
of academics exploited by a system put in place by
publishing giants (into which some universities around
the globe have bought into in order to have an inter-
nationally recognized ranking system) and the publish-
ers’ system of exploitation structured to increase the
share of free academic content to then be re-sold,
raises some essential questions on academic activity
and its outputs.

The answers to these problems can perhaps be found
in the creativity of the individuals who participate
in what is, at times, an harrowing process of revi-
sions, changes, reviews, replies and rebuttals. This is
a process that is managed by academics who donate
their time to generate alternatives to a system based
on the exploitation of content producers. For these
reasons I wish to thank Prof. Simon Penny and all the
authors who have contributed to DAC09: After Media:
Embodiment and Context.

Simon Penny in his introduction to this first LEA spe-
cial volume clearly states a) the importance of the
DAC09 and b) the gravitas and professional profile of
the contributors. These are two points that I can sup-
port wholeheartedly, knowing intimately the amount
of work that this volume has required in order to
maintain the high standards set by Mish Mash and the
good reception it received.

For this reason in announcing and presenting this first
special volume I am proud to offer readers the pos-
sibility of engaging with the work of professionals who
are contributing to redefining the roles, structures
and semantics of new media, digital art practices and
interdisciplinarity, as well as attempting to clarify what
digital creativity is today and what it may become in
the future.

The field of new media (which are no longer so new
and so young – I guess they could be better described
as middle aged, slightly plump and balding) and digital
practices (historical and contemporary) require new

definitions and new engagements that move away
from and explore beyond traditional structures and
proven interdisciplinary partnerships.

DAC09: After Media: Embodiment and Context is a vol-
ume that, by collating papers presented at the DAC09
conference, chaired by Prof. Simon Penny, is also
providing recent innovative perspectives and planting
seeds of new thinking that will redefine conceptualiza-
tions and practices, both academic and artistic.

It also offers to the reader the possibility of engaging
with solid interdisciplinary practices, in a moment in
which I believe interdisciplinarity and creative prac-
tices are moving away from old structures and defini-
tions, particularly in the fraught relationship between
artistic and scientific disciplines. If ‘cognitive sciences’
is a representation of interdisciplinarity between artifi-
cial intelligence, neurobiology and psychology, it is also
an example of interdisciplinary interactions of rela-
tively closely related fields. The real problem in inter-
disciplinary and crossdisciplinary studies is that these
fields are hampered by the methodological problems
that still today contrapose in an hierarchical structure
scientific methodologies versus art and humanities
based approaches to knowledge.

This volume is the first of the special issues published
by LEA and its appearance coincides with the newly
revamped website. It will benefit from a stronger level
of advocacy and publicity since LEA has continued to
further strengthen its use of social platforms, in ful-
fillment of its mission of advocacy of projects at the

Making Inroads: Promoting
Quality and Excellency of
Contemporary Digital Cultural
Practices and Interdisciplinarity

E D I T O R I A LE D I T O R I A L

4 5

http://thecostofknowledge.com/

L E O N A R D O E L E C T R O N I C A L M A N A C V O L 1 7 N O 2 I S S N 1 0 7 1 - 4 3 9 1 I S B N 9 7 8 - 1 - 9 0 6 8 9 7 - 1 6 - 1 I S S N 1 0 7 1 - 4 3 9 1 I S B N 9 7 8 - 1 - 9 0 6 8 9 7 - 1 6 - 1 V O L 1 7 N O 2 L E O N A R D O E L E C T R O N I C A L M A N A C

E D I T O R I A L

intersection of art, science and technology. DAC09 will
be widely distributed across social networks as open
access knowledge in PDF format, as well as being avail-
able on Amazon.

I extend a great thank you to all of the contributors
of DAC09: After Media: Embodiment and Context and
wish them all the very best in their future artistic and
academic endeavors.

Lanfranco Aceti
Editor in Chief, Leonardo Electronic Almanac
Director, Kasa Gallery

ACknowLEDgEmEnts

I would like to thank Ozden Sahin, LEA Co-Editor, for hav-

ing delivered with constancy another project of which LEA

could be proud. The LEA special issues are more similar

to small books – 200 pages is not a small endeavor – that

require special care and attentive selection.

I am very grateful to Prof. Simon Penny for the hard work

that he has put into this volume and to the authors who

have patiently worked with us.

To all of you my heartfelt thanks.

DAC09: After Media: Embodiment and Context is the first

special volume of the Leonardo Electronic Almanac to

be followed by many others that are currently in different

stages of production, each of them addressing a special

theme and focusing on bringing to the mainstream of

the academic debate new forms of thinking, challenging

traditional perspectives and methodologies not solely in

the debates related to contemporary digital culture but

also in the way in which these debates are disseminated

and made public.

To propose a special volume please see the guidelines

webpage at: http://www.leoalmanac.org/lea-special-

issues-submission-instructions/

REFEREnCEs AnD notEs

1. Thomas Lin, “Mathematicians Organize Boycott of a Pub-

lisher,” The New York Times, February 13, 2012,

http://www.nytimes.com/2012/02/14/science/research-

ers-boycott-elsevier-journal-publisher.html (accessed

March 20, 2012).

6 7

http://www.nytimes.com/2012/02/14/science/researchers-boycott-elsevier-journal-publisher.html
http://www.nytimes.com/2012/02/14/science/researchers-boycott-elsevier-journal-publisher.html

L E O N A R D O E L E C T R O N I C A L M A N A C V O L 1 7 N O 2 I S S N 1 0 7 1 - 4 3 9 1 I S B N 9 7 8 - 1 - 9 0 6 8 9 7 - 1 6 - 1 I S S N 1 0 7 1 - 4 3 9 1 I S B N 9 7 8 - 1 - 9 0 6 8 9 7 - 1 6 - 1 V O L 1 7 N O 2 L E O N A R D O E L E C T R O N I C A L M A N A C

This volume of lea is composed of contributions
drawn from participants in the 2009 Digital Art
and Culture conference held at the University of
California, Irvine in December 2009. DAC09 was the
eighth in the Digital Art and Culture conference series,
the first being in 1998. The DAC conference series is
internationally recognized for its progressive inter-
disciplinarity, its intellectual rigor and its responsive-
ness to emerging practices and trends. As director of
DAC09 it was these qualities that I aimed to foster at
the conference.

The title of the event: After Media: Embodiment and
Context, was conceived to draw attention to aspects
of digital arts discourse which I believe are of central
concern to contemporary Digital Cultural Practices.

“After Media’ queries the value of the term ‘Media
Arts’ – a designation which in my opinion not only
erroneously presents the practice as one concerned
predominantly with manipulating ‘media’, but also
leaves the question of what constitutes a medium in
this context uninterrogated. ‘Embodiment and Con-
text’ reconnects the realm of the digital with the larger
social and physical world.

‘Embodiment’ asserts the phenomenological reality
of the fundamentally embodied nature of our being,
and its importance as the ground-reference for digital
practices. ‘Embodiment’ is deployed not only with
respect to the biological, but also with reference to
material instantiations of world-views and values in
technologies, a key example being the largely uninter-
rogated Cartesianisms and Platonisms which populate
computational discourse. Such concerns are ad-
dressed in contemporary cognitive science, anthropol-
ogy and other fields which attend to the realities of
the physical dimensions of cognition and culture.

‘Context’ emphasises the realities of cultural, historical,
geographical and gender-related specificities. ‘Context’
brings together site-specificity of cultural practices,
the understandings of situated cognition and practices
in locative media. The re-emergence of concerns
with such locative and material specificity within the
Digital Cultures community is foregrounded in such
DAC09 Themes as Software and Platform Studies and
Embodiment and Performativity.

The DAC09 conference included around 100 papers by
an international array of contributors. In a desire to be
maximally responsive to current trends, the confer-
ence was to some extent an exercise in self-organisa-
tion by the DAC09 community. The call for papers and
the structure of the event was organized around nine
conference themes which were themselves the result
of a call to the community for conference themes. The
selected themes were managed largely by those who

proposed them. Much credit for the success of the
event therefore goes to these hard-working ‘Theme
Leaders’ : Nell Tenhaaf, Melanie Baljko, Kim Sawchuk,
Marc Böhlen, Jeremy Douglass, Noah Wardrip-Fruin,
Andrea Polli, Cynthia Beth Rubin, Nina Czegledy, Fox
Harrell, Susanna Paasonen, Jordan Crandall, Ulrik
Ekman, Mark Hansen, Terry Harpold, Lisbeth Klastrup,
and Susana Tosca, and also to the Event Organisers:
David Familian, Michael Dessen, Chris Dobrian, Mark
Marino and Jessica Pressman. I am particularly grate-
ful to Ward Smith, Information Systems Manager for
DAC09, who for two years, as my sole colleague on the
project, managed electronic communications, web de-
sign and the review and paper submission processes
amid, as he would put it, a ‘parade of indignities’. In the
several months of final planning and preparation for
the event, the acumen and commitment of Elizabeth
Losh and Sean Voisen was invaluable.

I first published on what we now refer to as digital arts
in 1987. 1 Not long after, I was lucky enough to have
the opportunity to attend the first IsEA conference
in 1988. Since that date I have been actively involved
in supporting the development of critical discourses
in the field, as a writer, an editor and an organizer of
events. My role as director of the DAC09 conference
gave me a perspective from which to reflect on the
state of digital arts discourse and its development
over two decades. As I discussed in a recent paper, 2
the first decade on media art theory was a cacopho-
nous interdisciplinary period in which commentators
from diverse fields and disciplines brought their exper-
tise to bear on their perceived subject. This created a
scenario not unlike that of various viewers looking into
a house via various windows, none of them perceiv-
ing the layout of the house, nor the contents of the
other rooms. In the ensuing decade, a very necessary
reconciliation of various disciplinary perspectives has
occurred as the field has become truly a ‘field’.

While post structuralist stalwarts such as Deleuze
and Derrida continue to be referenced in much of the
more critical-theory oriented work in Digital Cultures,
and the condition of the posthuman and posthumanist
are constantly referenced, theoretical reference points
for the field are usefully broadening. The emerging
field of Science and Technology Studies has brought
valuable new perspectives to media arts discourses,
counterbalancing the excesses of techno-utopianism
and the sometimes abstruse intellectualism of post-
structuralist theoretical discourses. In this volume,
Mark Tuters provides an exemplar of this approach
in his Forget Psychogeography: Locative Media as
Cosmopolitics, bringing Rancière and Latour to bear
on a discussion of HCI, Tactical Media and Locative
Media practices. Tuters provides a nuanced argument
replete with examples which questions the sometimes,
superficial and dogmatic re-citation of the originary
role of the Situationists with respect to such practices.
At DAC09, Connor McGarrigle also took a thoughtful
revisionist position with respect to the Situationists. 3

In this context, the new areas of Software Studies
and Platform Studies have emerged and have been
nurtured in previous DAC conferences. In this spirit,
Chandler McWilliams attempt to “thread the needle
between a reading of code-as-text that obfuscates
the procedural nature of code, and an overly techni-
cal description of programming that reinstates the
machine as the essential arbiter of authentic acts
of programming” is emblematic of the emergence
of Software Studies discourses which are quintes-
sentially interdisciplinary and erudite on both sides
of the science wars divide. Similarly, Mark Marino’s
meditations on heteronormativity of code and the
Anna Kournikova worm call for what he calls Critical
Code Studies, here informed by queer theory. In their
proposal for an ‘AI Hermenteutic Network’ Zhu and
Harrell address the question of intentionality, a familiar
theme in AI critical discourse (i.e., John Searle ‘Minds,

Two decades of
Digital Art and Culture
An introduction to the LEA DAC09 special edition

Simon Penny

Director of DAC09
Professor of Arts and Engineering
University of California Irvine

E D I T O R I A LE D I T O R I A L

8 9

L E O N A R D O E L E C T R O N I C A L M A N A C V O L 1 7 N O 2 I S S N 1 0 7 1 - 4 3 9 1 I S B N 9 7 8 - 1 - 9 0 6 8 9 7 - 1 6 - 1 I S S N 1 0 7 1 - 4 3 9 1 I S B N 9 7 8 - 1 - 9 0 6 8 9 7 - 1 6 - 1 V O L 1 7 N O 2 L E O N A R D O E L E C T R O N I C A L M A N A C

Brains and Programs’ 1980). Citing Latour, Agre,
Hayles and others, they offer another example of the
science-wars-sidestepping technical development
based in interdisciplinary scholarship noted in the
discussion of Chandler McWilliams’ contribution.

Another trend indicative of the maturation of this field
is its (re)-connection with philosophical discourse. In
this context, the deep analysis of Electronic Litera-
ture in terms of Wittgensteinian Language Games
by Mauro Carassia is something of a tour de force.
While a tendency to extropianism is here not explicitly
discouraged, this discussion places such technologi-
cal practices squarely as indicators of transition to
post-human subjectivity, and in the process, open the
discussion to phenomenological, enactive and situated
critiques as well a drawing in the relevance of pre-
cognitivist cybernetic theorisation.

One of the aspects of contemporary media arts
discourse which I hoped to foreground at DAC09 was
questions of embodiment and engagement with com-
temporary post-cognitivist cognitive science. Several
papers in the current collection reflect such con-
cerns, and indeed they were foregrounded in several
conference themes. One example of the value of the
application of such theory is evidenced in Kenny Chow
and Fox Harrells leveraging of contemporary neour-
science and cognitive linguistics in their deployment
of the concept of “material-based imagination” in their
discussion of Interactive Digital Artworks. In a quite
different approach to embodiment and computation,
Carrie Noland discusses choreography and particularly
the choreography of Cunningham, with reference to
Mauss and Leroi-Gourhan, and with respect to digital
choreographic tools.

The DAC community did not choose to make Game
Culture a focal theme in DAC09 – perhaps because
the field has grown so quickly and has built up a struc-

ture of conferences and journals. Nonetheless, gaming
culture was referenced throughout the event, and was
the subject of numerous presentations, such as Josh
and Karen Tannenbaums reconsideration of ‘agency
as commitment to meaning’, which addressed the
acknowledged problematic of the tension between
authorial and user agency in terms of a critique of
the humanist subject. Like wise, phraseology such as
Boluk/Lemieux’s: “player performance in and around
games has matured to the point of beginning to
express underlying serial logics through heavily man-
nered gameplay mechanics” (in their contribution to
this volume) signals the establishment of a mature
and erudite critical theory of games and gaming. On
a more technical note, Sullivan/WardripFruin/Mateas
make an argument for enriching computer game play
by application of artificial intelligence techniques to
the authoring of ‘quests’.

As Digital Arts became established as a practice the
question of pedagogy inevitably arose – what to teach
and how to teach it. Though rhetorics of convergence
pretend to the contrary, one cannot dispute the
profound epistemological and ontological dilemmas
involved in attempting to bring together intellectual
environments of such disparate communities as en-
gineers, artists and critical theorists, in the classroom
and the lab. Interdisciplinarity was therefore the
ground upon which these programs were developed,
and each context inflected that idea with its own color.
My own reflections on the subject are published at
Convergence. 4 It therefore seemed timely to address
pedagogy at DAC09. In the process of elaboration of
digital cultural practices, such emerging practices have
themselves come into consideration as pedagogi-
cal tools and systems. In this volume, Elizabeth Losh
surveys and discusses various pedagogical initiatives
(mostly in Southern California) deploying digital tools
and environments. In a contribution which crosses
between the pedagogy thematic and concerns with

cognition, Harrell and Veeragoudar Harrell offer a re-
port on a science, technology, engineering, and math-
ematics (stEm) educational initiative among at-risk
students which considers the relationships between
users and their virtual identities.

In his essay, Garnet Hertz discusses the work of three
artists – Reed Ghazala, Natalie Jeremijenko, and Tom
Jennings. None of them ‘media artists’ in the conven-
tional sense, they, in different ways and for different
purposes, re-purpose digital technologies. Round-
ing out this volume is presentation of two online
artworks by Sharon Daniels which were presented at
DAC09. Public Secrets and Blood Sugar are elegant
web-based art-works, both poetic and examples of a
committed activist practice.

In my opinion, this collection offers readers a survey of
fields addressed at DAC09, and an indication key areas
of active growth in the field. Most of them display
the kind of rigorous interdisciplinarity I regard as
characteristic of the best work in the field. While the
science-wars rage on in certain quarters, in media arts
discourse there appears to be an attitude of intelligent
resolution – a result in no small measure of the fact
that a great many such commentators and theorists
have taken the trouble to be trained, study and prac-
tice on both sides of the great divide of the ‘two cul-
tures’, and to take the next necessary step of attempt-
ing to reconciling or negotiate ontologies traditionally
at odds. This professional profile was very evident at
DAC09 and is represented by many of the contributors
in this volume. Such interdisciplinary pursuits are in my
opinion, extremely intellectually demanding. The obvi-
ous danger in such work is of superficial understand-
ings, or worse, a simple re-citation of a new canon of
interdisciplinary media studies. Dangers that, happily,
none of the papers grouped here, and few of the
papers presented at DAC09, fell victim of. ■

The electronic proceedings of DAC09 are available at this link:

http://escholarship.org/uc/ace_dac09

REFEREnCEs AnD notEs

1. “Simulation Digitization, Interaction: The impact of com-

puting on the arts,” Artlink, Art+ Tech Special Issue 7, no. 3

and 4 (1987).

2. “Desire for Virtual Space: the Technological Imaginary in

90s Media Art,” in Space and Desire. Scenographic Strate-

gies in Theatre, Art and Media, eds. Thea Brejezk et al.

(ZHdK Zurich: Zurich University of the Arts, 2010).

3. This paper, and all DAC09 papers referenced here, are

available as part of the DAC09 proceedings, online at

http://escholarship.org/uc/ace_dac09 (accessed March

2010).

4. Simon Penny, “Rigorous Interdisciplinary Pedagogy: Five

Years of ACE,” Convergence 15, no. 1 (February 2009): 31

- 54.

E D I T O R I A LE D I T O R I A L

1 0 1 1

L E O N A R D O E L E C T R O N I C A L M A N A C V O L 1 7 N O 2 I S S N 1 0 7 1 - 4 3 9 1 I S B N 9 7 8 - 1 - 9 0 6 8 9 7 - 1 6 - 1 I S S N 1 0 7 1 - 4 3 9 1 I S B N 9 7 8 - 1 - 9 0 6 8 9 7 - 1 6 - 1 V O L 1 7 N O 2 L E O N A R D O E L E C T R O N I C A L M A N A C

HUNDRED THOUSAND BILLION FINGERS:
SERIALITY AND CRITICAL GAME PRACTICES
Stephanie Boluk & Patrick LeMieux

ELECTRONIC LITERATURE AS LANGUAGE
GAME: A PHILOSOPHICAL APPROACH TO
DIGITAL ARTIFACT SUBJECTIVITY
Mauro Carassai

UNDERSTANDING MATERIAL-BASED IMAG-
INATION: COGNITIVE COUPLING OF ANIMA-
TION AND USER ACTION IN INTERACTIVE
DIGITAL ARTWORKS
Kenny K. N. Chow & D. Fox Harrell

PUBLIC RECORDS / SECRET PUBLICS:
INFORMATION ARCHITECTURE FOR NEW
POLITICAL SUBJECTS
Sharon Daniel

IMAGINATION, COMPUTATION, AND SELF-
EXPRESSION: SITUATED CHARACTER AND
AVATAR MEDIATED IDENTITY
D. Fox Harrell & S. Veeragoudar Harrell

PLAY, THINGS, RULES, AND INFORMATION:
HYBRIDIZED LEARNING IN THE DIGITAL
UNIVERSITY
Elizabeth Losh

LANGUAGE IN THE OTHER SOFTWARE
Chandler B. McWilliams

EDITORIAL Lanfranco Aceti

INTRODUCTION Simon Penny

4
8 ENERGY GEARED TO AN INTENSITY HIGH

ENOUGH TO MELT STEEL: MERCE
CUNNINGHAM, MOVEMENT, AND
MOTION CAPTURE
Carrie Noland

AN INTERVIEW WITH SIMON PENNY:
TECHNO-UTOPIANISM, EMBODIED INTER-
ACTION AND THE AESTHETICS OF
BEHAVIOR
Jihoon Felix Kim & Kristen Galvin

MAKING QUESTS PLAYABLE: CHOICES,
CRPGS, AND THE GRAIL FRAMEWORK
Anne Sullivan, Michael Mateas, Noah Wardrip-Fruin

NARRATING SYSTEM INTENTIONALITY:
COPYCAT AND THE ARTIFICIAL INTELLI-
GENCE HERMENEUTIC NETWORK
Jichen Zhu & D. Fox Harrell

ART AFTER NEW MEDIA: EXPLORING
BLACK BOXES, TACTICS AND ARCHAE-
OLOGIES
Garnet Hertz

OF SEX, CYLONS, AND WORMS:
A CRITICAL CODE STUDY OF
HETERONORMATIVITY
Mark C. Marino

120

136

146

160

172

184

Leonardo Electronic Almanac
Volume 17 Issue 2

14

36

50

66

74

92

110

C O N T E N T SC O N T E N T S

1 2 1 3

L E O N A R D O E L E C T R O N I C A L M A N A C V O L 1 7 N O 2 I S S N 1 0 7 1 - 4 3 9 1 I S B N 9 7 8 - 1 - 9 0 6 8 9 7 - 1 6 - 1 I S S N 1 0 7 1 - 4 3 9 1 I S B N 9 7 8 - 1 - 9 0 6 8 9 7 - 1 6 - 1 V O L 1 7 N O 2 L E O N A R D O E L E C T R O N I C A L M A N A C

A R T I C L EA R T I C L E

A B S T R A C T

Friedrich Kittler’s analysis of software in his essay “There is no Soft-
ware” evacuates the programmer from the realm of the computer by
focusing too intently on the machine and its specific, material existence. As
a result, he posits the material action of computers, in the form of volt-
ages, as the essential site of the being of computers. This paper attempts
to thread the needle between a reading of code-as-text that obfuscates
the procedural nature of code, and an overly technical description of pro-
gramming that reinstates the machine as the essential arbiter of authen-
tic acts of programming. By reasserting the presence of the programmer
and exploring the variety of types of coding, this essay offers an alternate
description of the being of software, one which emphasizes not just the ex-
ecution of code on the machine, but also the programmer’s role as reader
and writer of code.

Language in
The Other Software

INTRODUCTION

Friedrich Kittler’s essay “There is no Software” ar-
gues for a narrowly defined, materialist conception
of authentic uses of circuit-based computational
machines. To this end, he dismisses software and
high-level code languages, along with architectural
abstractions inherent in the design of most computer
systems, as unnecessary obfuscations which hide the
nature of the machine itself. Furthermore, he deploys
a conception of code-as-text the writing of which
can be understood in terms familiar to the writing of
natural language. These two ideas together necessar-
ily leave little room for the programmer in the creation
of computational artifacts. Reasserting the presence
of the coder opens the door for a new understanding
of code-as-text without falling into the trap of reading
code as literature or a machinic essentialism of volt-
ages.

Chandler B. McWil l iams

NOT EXACTLY WRITING

Programming language, writing code; it seems clear
that we are talking about language in the everyday
sense, about texts that are written. 1 Software is of
course written in a language, so why not bring to bear
the mature theories of text on the world of software?

“There is no Software,” like many texts in software and
critical code studies, talks frequently of writing. But
the word writing offers up an irresistible temptation
to talk about text. Writing code is writing like writing
music is writing. This is not to say that music theory is
the place to find insights into software, but to empha-
size the multiple flexible meanings of the word writing.
Music can be written sitting at a piano, with clicks on
the screen, or with symbols on paper. Text may or
may not be involved. Writing music is about manipu-
lating sound. Few would argue that theories of text
are relevant to understanding music. We should be
similarly wary of over-identifing code with written text.
Just as writing music is about manipulating sound,
not symbols, writing software is about manipulating
procedures, not language.

The flip side of understanding code-as-text is a
conception of reading that places the machine at the
center of the act of programming. Reading becomes
reading-by-the-machine. Source code is compiled and
turned into assembly, then translated into opcodes,
which eventually become voltages, the final, true
language of the machine. It is voltages, after all, that
integrated circuits traffic in. “All code operations, de-
spite such metaphoric faculties as call or return, come
down to absolutely local string manipulations, that is, I
am afraid, to signifiers of voltage differences.” 2

Even the binary codes we’re told so much about
are an abstraction on top of these voltages, 1 is just
a name for five volts, and 0 is a name for ground. 3
Combined with literary theory’s concern for what our
writing does (a concern shared by Kittler), reading-
by-the-machine offers a clear answer for software:

1 1 0 1 1 1

L E O N A R D O E L E C T R O N I C A L M A N A C V O L 1 7 N O 2 I S S N 1 0 7 1 - 4 3 9 1 I S B N 9 7 8 - 1 - 9 0 6 8 9 7 - 1 6 - 1 I S S N 1 0 7 1 - 4 3 9 1 I S B N 9 7 8 - 1 - 9 0 6 8 9 7 - 1 6 - 1 V O L 1 7 N O 2 L E O N A R D O E L E C T R O N I C A L M A N A C

A R T I C L EA R T I C L E

writing code produces a synchronized choreography
of voltages in integrated circuits.

It is all too easy to collapse the entire process and thus
to do away with software. If code is always and only
concerned with the eventual manipulation of voltages,
then in a sense, what does it matter? Why this long
process? We know what our writing does: it (even-
tually) affects voltage differentials in a silicon chip.
Wouldn’t it be simpler to slough off these abstractions
and get as close to the machine as possible?

We are rightly struck by the mystery of the written
word. The magic of not being able to map phrases
in natural language 4 to specific behaviors or states
in the mind of the reader is enticing. The wonderful
ambiguity of language.

Writing, in Western culture, automatically dictates
that we place ourselves in the virtual space of self-
representation and reduplication; since writing refers
not to a thing, but to speech, a work of language only
advances more deeply into the intangible density
of the mirror, calls forth the double of this already
doubled writing, discovers in this way a possible and
impossible infinity, ceaselessly strives after speech,
maintains it beyond the death which condemns it, and
frees a murmuring stream. This presence of repeated
speech in writing undeniably gives to what we call a
work of language an ontological status unknown in
those cultures where the act of writing designates the
thing itself, in its proper and visible body, stubbornly
inaccessible to time. 5
Is this then the status of writing software? Writing
which designates the thing (voltages) in itself? Con-
tinuing this line of thought, the ambiguity of natural
language is lost on the machine; there is only source
code to assembly to opcodes to voltages. Read as
a one-to-one mapping; the meaning and action is

understood, explained, fixed. If this is the reading to
compliment the writing of software, then the writer of
code is no more than an operator manipulating a ma-
chine to produce a specific predetermined result. Like
a switchboard operator, meticulously and uncreatively
plugging circuits.

NOT EXACTLY VOLTAGES

When code is understood as literature, and so the
techniques and questions of literary theory are asked
of it, the machine will always emerge as the final
answer. Missing from these discussions are the writer,
the coder, the programmer. Rejecting the notion that
code operates as a literary text allows us to reassert
the presence of the coder in the code.

But if not text, then what? To avoid the temptations
of the terms text, writing, and literature, let us say that
code is an artifact. Specifically an artifact for describ-
ing and designing procedures and systems. 6 Code
comes in many languages. Unlike the babel of human
languages, programming languages tend to differ
depending on how quickly the software can be coded,
how easily the code is to write (there is a tacit rela-
tionship between the difficulty of writing the code and
the speed with which the code will run), or on what
hardware the software needs to run. The key differen-
tiating factors however are the assumptions inherent
in each language about how the coder thinks. This last
and most important feature of a programming lan-
guage is perhaps the primary reason for the develop-
ment of new languages, methodologies, and cognitive
styles. A consequence of this computational babel ef-
fect is that there is not one ideal language for writing a
given piece of software. The choice of language is far
more influenced by the skillset and needs of the coder
than properties of the software being coded. There
is rarely if ever one clear, best choice. What’s more, it

is not always possible to identify which requirements
of the software will play a central determining role
in making a choice of language until the coding has
already begun. Thus the practice of prototyping and
sketching solutions in a familiar environment to gain
a better understanding of the problem itself. Here is
one similarity with the writing of a text; the process of
coding itself is often the only way to gain an under-
standing of what is to be coded.

An over-emphasis on the voltages in the silicon cannot
account for the multiplicity of programming languages.
The same piece of software, if written in a different
language, will become a different set of voltages when
compiled and executed. And since there are no clear
machine-centric metrics by which to judge one set of
opcodes as superior to another – judgements about
speed, memory efficiency, etc. are all relative to the
purposes of the human user – then how can these
voltages serve as the ultimate measure of what it is
that our (software) writing does? It cannot, and it fails
to do so because writing code is not about manipu-
lating voltages any more than writing music is about
manipulating vibrations.

Processes and systems are the core concern of code.
Writing software is writing procedures; defining rules
and bounds for action, creating the possibility for be-
havior, form, and interaction. From the simplest utility
script to the most realistic physics simulator, the com-
mon thread is the code which describes a particular
process for achieving a task. There are of course, vary-
ing degrees of open-endedness and complexity across
these two examples. A script that converts file names
to lower case will, if written well, perform reliably and
always produce the expected outcome. A simulation
like those in video games is less straightforward. The
outcome is not always predictable. This allows for a
unique and rewarding gaming experience when played
repeatedly, but also opens the door for simulation as

a tool to model and eventually predict the outcome of
the interaction of massive numbers of variables and
processes. This can perhaps be most clearly stated in
terms of how code operates in the arts. Here genera-
tive and parametric processes create the possibility
of form; code creates a world of possibility within
constraints rather than a particular form.

WHERE IS CODE EXECUTED?

A piece of software could always have been written in
a different language yet perform the same task; often
performing that task in a different way, with different
voltages in the machine, and different mental models
in the coder. Loosening the relationship between
code and the machine lets us ask the question: Where
is code executed? By Kittler’s account, only in the
machine after its eventual conversion to voltages; the
programmer is only an operator tasked with control-
ling the machine. But if programming languages often
perform the same task differently, offering important
differences only to the programmer, then what do
these differences tell us about programming? The
keys ways in which languages differ is in terms of the
mental models they offer and the assumptions they
make about how code should be written. The multi-
plicity of ways of thinking about software indicates
that code must to some extent be run in the mind of
the programmer. Run with far less speed, complexity,
and precision, but executed nevertheless. How else
would programming be possible? The extent to which
we can recognize that a programmer knows what
effect a line of code will have is precisely the extent
to which we can recognize that she has already run a
simulation of that code in her head. The only other op-
tion is that coding is just smashing together symbols
which are sent to the machine with fingers crossed.
So software must have an effect on how the program-
mer conceptualizes a problem – in the form of mental

1 1 2 1 1 3

L E O N A R D O E L E C T R O N I C A L M A N A C V O L 1 7 N O 2 I S S N 1 0 7 1 - 4 3 9 1 I S B N 9 7 8 - 1 - 9 0 6 8 9 7 - 1 6 - 1 I S S N 1 0 7 1 - 4 3 9 1 I S B N 9 7 8 - 1 - 9 0 6 8 9 7 - 1 6 - 1 V O L 1 7 N O 2 L E O N A R D O E L E C T R O N I C A L M A N A C

A R T I C L EA R T I C L E

models and cognitive styles – and also exists as a de-
scription of a procedure interpretable by other coders
without the intervention of the machine, without ever
becoming voltages. To speak of software only in terms
of voltages is no more interesting that to discuss a
painting only in terms of the electro-chemical activity
in the brain of the painter.

OBFUSCATION / ABSTRACTION

Kittler takes pains to describe the layers operating
behind software. High-level programming languages
are turned into assembly which then becomes op-
codes and eventually voltages in the circuitry of the
machine. This parallels another layering, an application
(WordPerfect in his example) running over an operat-
ing system, which is in turn running on top of BIos.
He characterizes this as obfuscation, a complicated
series of frauds perpetrated in the name of preserving
(creating) intellectual property. However this layering
is not so simple. Take the example of a driver and car.
The car has pedals and a wheel which hide the under-
lying details of how it moves. The driver rarely needs
to know if the car is powered using gas or electricity,
he just needs to know that pushing the long vertical
pedal makes it go. In programming terms we might
say that the interface of the car (pedals and wheel)
hides the implementation (engine, transmission, etc).
Much like the abstractions of software, these abstrac-
tions are often useful, but can effectively put the user
at the mercy of the designers of the system in ques-
tion. Just as it is increasingly difficult to repair a new
car in a home garage, the unavailability of the source
code for popular software packages make them nearly
impossible to alter.

However, there are other purposes for these abstrac-
tions and seeming obfuscations. For one, higher-level
programming languages are “higher” in that their

syntax and organization does not directly parallel the
opcodes required by the machine. This makes them
easier to learn and to think with. One can imagine a
continuum between machine language and human
language. Along this line, “higher” simply means a few
steps closer to the human and away from the machine.
Without these abstractions, programming would
likely still be something of a dark art performed by
self-appointed wizards at well-funded universities. But
as it is we have visual languages, scripting languages,
languages for artists, and languages for children. To
write code for the machine always requires a change
in our thought; points on this continuum never fully
reach the human. It is always a meeting somewhere
in-between: a becoming-machine of the programmer.
This becoming cannot be summarized with phrases
like “think like a machine.” It is instead a thinking-
along-with the machine. A direct engagement with the
structures and potentials of a particular machine run-
ning a particular piece of code. It is here that code dif-
fers from other process-oriented languages, the most
pervasive of which are legal codes. The law turns on
interpretation of language and precedent; the mean-
ing and application of legal documents evolve over
time. Software codes on the other hand do not afford
such ambiguity. The play and flexibility in software
operates at the level of the processes being written,
not at the level of language. Insofar as one uses a
standardized language AnsI C, Java, etc. there is the
assumption of standard execution, something unique
to computation, and something which obscures the
obverse side of procedural thought.

Quoting The Waite Group’s Macroassembler Bible,
Kittler tells us that “BIos services hide the details
of controlling the underlying hardware from your
program.” 7 This hiding is not necessarily malicious.
Because programming requires concurrent reading
and executing of code in the mind of the programmer,
increases in complexity of the software necessarily
bring increases in the difficulty of the mental execu-
tion. Rather than always-already indicative of a patron-
izing concealment, this “hiding” is often a useful tool
to allow a complex system to be modularized and thus
thought-through. There is only so much one can hold
in one’s head at one time. This process of encapsula-
tion thus allows the coder to trust that a certain ele-
ment will behave as advertised and therefore put out

of her mind until she needs to change the behavior or
the element does something unexpected. The heart
needn’t worry how the liver works as long as it keeps
working.

EXPRESSIVE EXECUTION

Understanding that code is also for people, that it is
always executed to some extent in the mind of the
coder, opens the door for expression at the level
of the text of the code. If the machine is placed at
the center of the human-machine assemblage that
is computer programming, we lose the ability to
make judgements about the code at the level of text
precisely because all questions about the value of one
snippet of code versus another are settled by how
the code runs on the machine. Thinking of code as
something that must be intelligible for others, or more
often for oneself in the future, lets us engage the
broad flexibility of style and methodology present in
all programming practices.

The simplest example of this is the choice of variable
names. Variables in code store bits of data, they are in
a sense the “nouns” of programming. Most program-

ming languages give the coder relative freedom to
name variables, for example many currently popular
languages only require that variable names begin with
a letter of the alphabet or the “_” symbol, and then
contain only letters, numbers, or the “_”. From the
machine’s perspective, it makes no difference how a
variable is named; it could be given any valid name
and the code would function the same way. As the
programmer though, the choice of a name can make
a significant difference in the legibility of the program.
Just because a variable could be named something
else doesn’t mean it makes no difference what it is
named. In fact this simple subject is at the center
of countless ongoing battle about the proper way
variables should be named. Countless systems have
evolved over the years to discipline coders to follow
certain naming rules “for their own good.” The most
famous of these systems is the so-called Hungarian
Notation developed by Charles Simonyi in the 1970s

Thinking of code as something that
must be intelligible for others, or
more often for oneself in the future,
lets us engage the broad flexibility of
style and methodology present in all
programming practices.

1 1 4 1 1 5

L E O N A R D O E L E C T R O N I C A L M A N A C V O L 1 7 N O 2 I S S N 1 0 7 1 - 4 3 9 1 I S B N 9 7 8 - 1 - 9 0 6 8 9 7 - 1 6 - 1 I S S N 1 0 7 1 - 4 3 9 1 I S B N 9 7 8 - 1 - 9 0 6 8 9 7 - 1 6 - 1 V O L 1 7 N O 2 L E O N A R D O E L E C T R O N I C A L M A N A C

A R T I C L EA R T I C L E

in which the coder includes a mnemonic for the type
of data the variable represents in the variable’s name
often leading to unpronounceable and hard to read
names.

Beyond the world of idioms and best-practices, vari-
able, class, function, and method naming acts as a
site for expressing the intentions of the coder, or
introducing metaphors to represent what the code is
doing. The possibilities of terse, literal, playful, etc. all
contribute to how the code is conjured into being in
the mind of the programmer often regardless of that
code being technically executed in the machine. Here
code-as-text and code-as-process are merged; it is
far simpler to imagine and model a complex system if
the elements of that system have reasonable linguistic
handles to hold on to. In this simple act of naming
entire ontological systems are woven.

Increasingly code is used as a medium for artistic
expression in both the visual and plastic arts and
literature. In addition to pieces of art created with
computers, pieces of source code itself are distributed
as pieces in their own right. Work such as Zach Blas’

“transCoder: Queer Programming Anti- language” uses
the syntax of code, an API to be exact, to critique the
heteronormative structures at play in technology. This
is also seen in Perl poetry, where poems are written or
transcribed into the computer language Perl. Both of
these uses ask us to consider the necessity for a piece
of code to successfully execute on a machine. Looking
at numerous Perl poems for instance, one is met with
pieces that range from syntactically valid but missing
key pieces that would allow them to actually run, to
programs that run and express and idea not necessar-
ily present in the execution of the code itself, to other
pieces that produce truly stunning output while the
code itself operates as a beautiful piece of writing.
All of the points on this continuum tell us something
about the nature of code. Socio-political API’s that end

at defining the names and descriptions of possible
functions of mythical systems of liberation reexamine
the dominant language of control in our time, code,
and explore how that language could be put to other
purposes. Source code that treats the syntax of code
as just one among many literary styles continues this
exploration, while making use of in-jokes present in
each language and forces ambiguities between syntax
and expression. And finally executable codeworks take
the source language itself as a realm of play; pushing
creative freedom and expression to the limit within
the constraints of executability given by the machine.

HARDWARE ESSENTIALISM

Integrated circuits, the hardware at the core of all
digital computers, require strictly defined paths for
electrons to travel through on the chip. Without
these controls, the chip would, more often than not,
do nothing; similar to randomly connecting cables
between your tV and DVD player. This is a common
strategy no doubt which, more often than not, fails to
produce a picture on the screen. If a chip’s behavior
cannot be predicted and controlled, it cannot be
programmed. 8 Michael Conrad has argued, in a paper
heavily drawn upon by Kittler, that this situation cre-
ates a necessary trade-off between connectivity and
programability. “The amount of information process-
ing carried out by a physical system freed from the
constraints necessary to support programmability
is thus potentially much greater than the potential
information processing performed by a system not so
constrained.” 9 Taking this to its extreme conclusion,
Kittler argues that only by removing the restrictions
necessitated by programability is it possible to “enter
into that body of real numbers originally known as
chaos.” 10
Kittler radicalizes Conrad’s argument and describes

non-programmable machines as “badly needed” in
that they “work essentially on a material substrate
whose connectivity would allow for cellular recon-
figurations” and so, “Software in the usual sense of an
ever-feasible abstraction would not exist any longer.”
Kittler’s brash materialism again shines through. Only
when procedures are moved in a non-symbolic way
to the real of the material, when the matter of the
chip always and only executes the same operation as
a matter of material necessity, have we finally created
an authentic computing machine.

Despite being non-programmable, the machines
described by Conrad are still usable for human tasks.
However, these machines would rely on evolution-
ary techniques to find solutions to a problem. The
programmer then becomes a breeder, combining
elements from the best individuals to create a new
generation, designing environmental fitness conditions
and running genetic operations in an iterative process
of searching the terrain of possible solutions. Adrian
Thompson created just this type of system by working
with field-programmable gate arrays (FPgA) – a type
of integrated circuit that is physically reconfigurable.
He developed an evolutionary system to evolve a con-
figuration of an FPgA chip capable of discriminating
between two audible tones. Eventually a successful
configuration emerged. But unlike a solution expected
from a programmable system, the evolved configura-
tion took advantage of unique material properties of
the chip on which it evolved, using quantum tunneling
and exploiting irregularities in the physical material of
the chip. As Thompson puts it, “a robust asynchronous
design was found that could not have resulted from
normal design principles.” 11
An evolutionary system using non-programmable
chips does have far fewer layers of abstraction and ob-
fuscation between the programmer and the machine.
But if, unlike Kittler, we resist the temptation to con-

fuse matter with medium, then we are not compelled
to interpret this as a necessarily more authentic en-
gagement with computation. It is simply another way
for humans to think through and use computational
systems. Thompson’s work, though unlike other acts
of programming, nevertheless involved the articulation
of a process–or perhaps a meta-process–in the form
of an evolutionary system working to create a FPgA
configuration capable of a specific task. In other words,
the medium of the programmer is process in the form
of code, not always (or only) the hardware on which
her software is executed.

DOING / BEING

It is nearly impossible to talk about coding without
talking about what the coder is trying to accomplish.
The discussion is always already shot through with
mentions of goals, tasks, problems, intentions, and
action. Even the evolutionary techniques as applied
to so-called non-programmable hardware require
a specific formulation of human goals. We are still
asking the machine to perform an operation, just in a
different way and using a different vocabulary. Even
in the most software-free variation, the trail of the
human serpent runs over the voltages in the machine.
In software there are always many moments of doing:
The back-and-forth between machine and coder as
software is written, the compiling of that source code
into opcodes for the machine, the effect of running
the code on the machine. Eventually all running soft-
ware must rub up against the needs and goals of the
user, though these needs may have been prefigured in
advance by the assumptions of the coder. Of course
many times this loop is closed as the programmer her-
self becomes a user of her own creations. To identify
one moment in this chain as the essential moment

– in Kittler’s case, when the opcodes finally control
voltages – is to attempt to replace doing with being.

1 1 6 1 1 7

L E O N A R D O E L E C T R O N I C A L M A N A C V O L 1 7 N O 2 I S S N 1 0 7 1 - 4 3 9 1 I S B N 9 7 8 - 1 - 9 0 6 8 9 7 - 1 6 - 1 I S S N 1 0 7 1 - 4 3 9 1 I S B N 9 7 8 - 1 - 9 0 6 8 9 7 - 1 6 - 1 V O L 1 7 N O 2 L E O N A R D O E L E C T R O N I C A L M A N A C

A R T I C L EA R T I C L E

REFEREnCEs AnD notEs

1. Though the vast majority of code is text-based, meaning

it is written using the characters and symbols common to

the ASCII specification, code can also be visual, in which

the processes of “writing” entails connecting graphical ele-

ments called patches much like programming a modular

analog synthesizer or connecting an electronic circuit. The

most well know patch-based environment is MAX/MSP,

but newer patching systems include VVVV, Quartz Com-

poser, and Grasshopper. Given Kittler’s revulsion at the

graphical user interface (“[O]n an intentionally superficial

level, perfect graphic user interfaces, since they dispense

with writing itself, hide a whole machine from its users”) it

is fair to assume that visual programming languages would

be met with considerable scorn.

2. Friedrich Kittler, “There is No Software,” in Literature, Me-

dia, Information Systems, ed. John Johnston (New York:

Routledge, 1997), 147–155.

3. These values aren’t perfect; i actuality a voltage range is

broken roughly into thirds with the upper and lower thirds

representing 1 and 0 respectively and the middle third

denoting an indeterminate state.

4. Florian Cramer takes issue with the use of the term “natu-

ral language” as opposed to “formal” or “programming”

language. I take “natural” in this context to refer more to

the development and etymology of spoken languages

vis-à-vis programming languages rather than a claim about

ontological status. Florian Cramer, “Language” in Software

Studies, ed. Matthew Fuller (Cambridge: MIT Press, 2008),

168–174.

5. Michel Foucault,“Language to Infinity” in Language,

Counter-Memory, Practice, ed. Donald Bouchard (Ithaca:

Cornell University Press, 1980), 53–67.

6. Noah Wardrup-Fruin explores this idea and the expressive

potential of software in his book Expressive Processing.

Noah Wardrip-Fruin, Expressive Processing (Cambridge:

The MIT Press, 2009).

7. Friedrich Kittler, “There is No Software,” in Literature, Me-

dia, Information Systems, ed. John Johnston (New York:

Routledge, 1997), 147–155.

8. More accurately this type of chip may be programmable,

but to do so would require techniques specific to each

individual chip.

9. Michael Conrad, “The Price of Programability” in The

Universal Turing Machine: A Half-Century Survey, ed. Rolf

Herken (New York: Springer-Verlag, 1995), 261–282.

10. Friedrich Kittler, “There is No Software,” in Literature, Me-

dia, Information Systems, ed. John Johnston (New York:

Routledge, 1997), 147–155.

11. Adrian Thompson,“Notes on Design Through Artificial

Evolution: Opportunities and Algorithms” in Adaptive

Computing in Design and Manufacture, ed. I. C. Parmee

(New York: Springer-Verlag, 2002), 17–26.

And to do so in the most brutally materialist way; if
software does not exist, there is nothing to be said
about the effect software has on politics or thought,
either the thought of the coder or of the end-user. A
virus that destroys a nation’s economy, a protein fold-
ing simulation that finds the cure for a disease, and a
copy of Minesweeper all do the same thing; they cre-
ate voltages in silicon chips. Had they not been written
in code, we could not talk about them in terms of
politics, social change, or ethical import. They would
simply be or not. ■

1 1 8 1 1 9

